Hardware Acceleration for Neural Networks

RENOBLE

UGA

European Union

Grenoble Alp

Frédéric Pétrot

Univ. Grenoble Alpes, CNRS, Grenoble INP*, TIMA/INP Ensimag, F-38000 Grenoble, France Multidisciplinary Institute In Artificial Intelligence

☆ tima.univ-grenoble-alpes.fr/

research/sls/members/frederic-petrot

✓ frederic.petrot@univ-grenoble-alpes.fr

*Institute of Engineering Univ. Grenoble Alpes

Breaking news: Computers actually need energy!

- Power consumption primer
- Orders of magnitude

Hardware Accelerated AI^H^H ML^H^H NN

- DNN as seen by HW guys
- What is HW by the way and why use it?
- Ways to "enhance" NN computations

Digital Electronics 101

Current Computer Technology

- Modern electronic: semi-conductor based devices
- Digital computations based on (nano-)electronic devices working in *base two* Blnary digIT: {0,1} (a.k.a *bit*)
- Device: CMOS transistor used as a switch

CMOS transistor \neq ideal switch Second order model with parasitics:

C_{in}: grid capacitance,

 R_{in} : input resistance $\rightsquigarrow \infty$

- ▶ *R*on: resistance when closed
 - R_{off} : resistance when open $\rightsquigarrow \infty$
- causes of non-instantaneous energy consuming transitions

Charging a capacitance through a resistance:

$$V_{out} = V_{dd} \times (1 - e^{\frac{-t}{RC}})$$

Discharging a capacitance through a resistance: $V_{out} = V_{dd} \times (e^{\frac{-t}{RC}})$

Power consumption:
$$P = \alpha C V_{dd}^2 f + I_{leak} V_{dd}$$

Complementary Metal Oxyde Semiconductor

Why CMOS?

Very small dimensions

Mass production smallest transistor width in 2024/2025 : 3 nm

- TSMC Apple A14/A15, Huawei Mate 40, HiSilicon Kirin 9000 -: 173 MTr/mm² Apple M1 (16 Mrds Trs): 134 MTrs/mm² actual transistor density
- Samsung Exynos, Snapdragon 8xx, Nvidia Hopper –: 127 MTr/mm²
- Intel 123.4 MTr/mm²

Si atomic radius is $\approx 0.11 \text{ nm}$!

 $2 \ \mathrm{nm}$ production expected for 2025, $1 \ \mathrm{nm}$ for 2027

Very high yield

- ▶ Boolean logic computation in $\leq 10 \times 10^{-12}$ seconds
- ▶ Power consumption $\leq 1 \times 10^{-15}$ joules / transition*
- \blacktriangleright Allows us to reason with zillions of 0 and 1

 \Rightarrow CMOS: hyper-hegemonic digital technology

Energy production

https://app.electricitymaps.com/map

Energy production

in MegaTonne of Oil Equivalent
U.S. Energy Information Admisistration
https://www.eia.gov/outlooks/ieo/pdf/0484(2017).pdf

Neural Network 101

Neural Network 101, cont.

Computer System 101, cont.

Storage order of magnitude for size, access time, and cost

Registers							
	1980		2023	2023 vs 1980			
T _{acc} (ns)	300		0.20	÷1500			
Typ. size (B)	64		512	×8			
Static memory							
	1980		2023	2023 vs 1980			
\$/MB	19,200		5	÷3840			
T _{acc} (ns)	300		1	÷300			
Typ. size (KB)	32		8192	×256			
Dynamic memory							
	1980		2023	2023 vs 1980			
\$/MB	8,800		0.003	÷2,930,000			
T _{acc} (ns)	375		30	÷12.5			
Typ. size (MB)	0.064		32,000	×500,000			
Hard drive							
	1980		2023	2023 vs 1980			
\$/MB	500		.000018	÷27,800,000			
T _{acc} (ms)	87		12	÷7			
Typ. size (GB)	0.001		8,000	×1,500,000			

Sources : John C. McCallum (https://jcmit.net/) and various (D/S)RAM vendors web sites

Computer System 101, cont.

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2021 by K. Rupp

Computer System 101, cont.

Compute trends

b Hardware development

Computer System 101 + Neural Networks 101 ⇒ î 🙋 🔮 🍭

Quick Summary

Raw Power Consumption:

- CPUs: 100/150/300 Watt
- GPUs: 250/300/700 Watt

Training Example

NVidia MegatronLM

- Used 45 Tera Bytes of data
- On 512 V100 NVIDIA GPUs during 9 days
- ▶ $512 \times 300 \times 9 \times 24 = 33177 \text{ kWh}$

 $7\times$ the energy an average French family uses per year! (4590 kWh)

⇒ We ought to do better!

Carbon Emissions and Large Neural Network Training, David Patterson et al, https://arxiv.org/pdf/2104.10350.pdf

Artificial Neural Nets: Multi-Layer Perceptrons (late 1950's)

Two phases :

Training and Inference

- Elementary computations conceptually pretty simple
- Parameters: Weights and Biases
 - \Rightarrow "Found" during training
 - \Rightarrow "Used" during inference
- Available computing power limits training

NaÃ⁻ve FC in C

```
void dense(int inputs,
           int outputs,
           float input[inputs],
           float weight[outputs][inputs],
           float bias[outputs],
           float output[outputs])
Ł
    for (int j = 0; j < outputs; i ++) {</pre>
        for (int i = 0; i < inputs; i ++) {</pre>
            output[j] += input[i] * weight[j][i];
        }
        output[j] = activation(output[j] + bias[j]);
    }
}
```

Boils down to matrix-vector multiplication

▶ Input data can be large: small 32x32 pixels images \Rightarrow 1024 NN inputs

Artificial Neural Nets: Convolutional NN (Mid 2010's)

Another view of GoogLeNet's architecture.

- Same elementary operations, just repeated zillions times
- Additional inter-layer operations, fork and merge of connections
- Training possible thanks to GPU based compute farms

NaÃ⁻ve conv2D software implementation in C

}

```
void conv2d(int in_channels, int out_channels, int img_size, int kernel_size,
            float input[img_size][img_size][in_channels],
            float kernel[out channels][kernel size][kernel size][in channels].
            float bias[out_channels].
            float output[img size - 2 * (kernel size / 2) + !(kernel size & 1)]
                         [img size - 2 * (kernel size / 2) + !(kernel size & 1)]
                         [out_channels])
{
    int fm size = img size -2 * (\text{kernel size } / 2) + !(\text{kernel size } & 1);
    for (int o = 0; o < out channels; o++)</pre>
        for (int k = 0; k < fm_size; k++)
            for (int l = 0; l < fm size; l++) {
                 float mac = 0:
                for (int m = 0; m < kernel_size; m++)</pre>
                     for (int n = 0; n < kernel size: n++)</pre>
                         for (int i = 0; i < in_channels; i++)</pre>
                             mac += kernel[o][m][n][i] * input[k + m][l + n][i];
                 output[k][l][o] = relu(mac + bias[o]):
            }
```

Conv2D software implementation compiled with gcc -03

conv2d:		shrq	\$2, %rdi	.L21:		movups	(%rsi,%rax), %xmm0	jle	.L13 .L	16:	
pushq	%r15	shrq	\$2, %rax	movl	-96(%rsp), %eax	movups	(%rcx,%rax), %xmm4	cltq		movslq	-92(%rsp), %rax
movl	%esi, %eax	movq	%rdi, %rsi	testl	%eax, %eax	addq	\$16, %rax	addq	%rax, %rdx	movq	-56(%rsp), %r15
movl	%edx, %esi	movq	%rax, -56(%rsp)	jle	.L24	mulps	%xmm4, %xmm0	addq	%r9, %rax	movq	%rax, %rsi
movl	%ecx, %r15d	testl	%r8d, %r8d	movq	%rcx, -16(%rsp)	addss	%xmm0, %xmm1	addq	%rdi, %rax	imulq	%r15, %rax
pushq	%r14	jle	.L4	xorl	%esi, %esi	movaps	%xmm0, %xmm2	movss	(%r10,%rdx,4), %xmm0	movq	-48(%rsp), %r15
movslq	%edi, %rdx	movslq	%r8d, %rcx	xorl	%eax, %eax	shufps	\$85, %xmm0, %xmm2	mulss	(%r14,%rax,4), %xmm0	addl	\$1, %esi
pushq	%r13	leal	-1(%r13), %eax	pror	%xmm1, %xmm1	addss	%xmm2, %xmm1	addss	%xmm0, %xmm1	movl	%esi, -92(%rsp)
leaq	0(,%rdx,4), %r10	movl	%r13d, %r14d	movl	%r8d, -4(%rsp)	movaps	%xmm0, %xmm2 .I	.13:		addq	%r15, %rax
pushq	%r12	xorl	%edi, %edi	movq	%r9, (%rsp)	unpckhp	8 %xmm0, %xmm2	movq	-112(%rsp), %rdi	movss	%xmm1, (%rdx,%rax,4)
pushq	%rbp	imulq	%rcx, %rdx	movq	%rdx, 8(%rsp)	shufps	\$255, %xmm0, %xmm0	leal	1(%r8), %eax	cmpl	Xesi, Xr8d
pushq	%rbx	movl	%eax, -80(%rsp)	movq	%r11, 16(%rsp)	addss	%xmm1, %xmm2	addq	%rdi, %rcx	jne	.L21
subq	\$32, %rsp	movl	%r13d, %eax	.L19:		movaps	%xmm0, %xmm1	cmpl	%eax, -96(%rsp)	movl	-8(%rsp), %esi
movl	%ecx, -96(%rsp)	andl	\$-4, %r14d	movl	-8(%rsp), %ecx	addss	%xmm2, %xmm1	je	L11	movq	%rcx, %r15
movslq	%esi, %rcx	shrl	\$2, %eax	movslq	%eax, %r9	cmpq	%rax, %r12	movl	%eax, %r8d	movq	-24(%rsp), %rcx
imulq	%rdx, %rcx	xorl	%r15d, %r15d	movq	%rdi, -88(%rsp)	jne	.19	jmp	.L15	movq	%rdi, %rax
movq	%r8, -104(%rsp)	pxor	%xmm3, %xmm3	xorl	%r8d, %r8d	movl	%ebx, %eax .I	.11:		addl	\$1. %esi
movq	%r10, -112(%rsp)	salq	\$4. %rax	imulg	%rdi, %r9	cmpl	%ebx, %r13d	movq	-88(%rsp), %rdi	addq	%rcx, %rdx
movq	%rcx, -64(%rsp)	movq	%rax, %r12	movl	%eax, -76(%rsp)	1e .	L13	movl	-76(%rsp), %eax	cmpl	Xesi, Xr8d
movslq	%r15d, %rcx	movq	%rdx, %rcx	leal	(%rax,%rcx), %r11d	.L8:		movq	-72(%rsp), %rsi	jne	.L22
imulg	%rcx, %rdx	movq	%rsi, %rax	movq	-64(%rsp), %rcx	movslq	%r8d, %rdi	leal	1(%rax), %edx	movq	%r9, %rdx
movq	%rcx, %rbx	movq	%rdi, %rdx	movq	%rsi, -72(%rsp)	imulg	%rbp, %rdx	addq	%rdi, %rsi	movq	-32(%rsp), %rdi
movl	%r15d %ecx	movq	%r9, %rdi	movslq	%r11d, %r11	movslq	Xeax, Xrsi	cmpl	%r8d. %eax	movq	-40(%rsp), %r9
shrl	\$31, %ecx	movq	%rbx, %r9	imulg	Xrcx, Xr11	imula	%rbp, %rdi	1e	L28	addq	\$1. %r15
addl	%r15d. %ecx	movl	%r14d, %ebx	mova	-104(%rsp), %rcx	leag	(%rsi,%r9), %r15	movl	%edx. %eax	addq	%r9, %rdx
andl	\$-2, %ecx	.L7:		lead	(%rcx,%r11,4), %r10	addq	%rdx, %rsi	imp	.L19	cmpg	%r15, %rdi
imula	Xrdx, Xrbx	mova	96(%rsp), %r14	lead	(%r14,%rsi,4), %rcx	adda	%rdi, %r15 .I	.23:		ine	.1.7
subl	Xecx. Xesi	movq	%rdi, -32(%rsp)	.L15:	(movss	(%r14,%r15,4), %xmm0	xorl	Xeax. Xeax	4:	
movl	%r15d %ecx	lead	(%r11,%rdx,4), %r10	testl	%r13d, %r13d	mulss	(%r10,%rsi,4), %xmm0	movsla	Xedx, Xrdx	addq	\$32. %rsp
notl	Xecx	movslg	%r15d, %rsi	ile	.L13	leal	1(%rax), %esi	imp	.18	popg	%rbx
andl	\$1. %ecx	mova	%rsi, -48(%rsp)	movl	-92(%rsp), %eax	addss	XxmmO, Xxmm1 .I	.28:		popg	%rbp
leal	(%rsi,%rcx), %r8d	xorl	Xesi, Xesi	cmpl	\$2, -80(%rsp)	cmpl	Xesi, Xr13d	mova	-16(%rsp), %rcx	popg	%r12
testl	%eax %eax	mova	%r9, -40(%rsp)	leal	(%rax.%r8), %edx	ile	.L13	movl	-4(%rsp), %r8d	popg	%r13
ile	.1.4	mova	Zrdx, Zr9	ibe	.1.23	movala	Zesi, Zrsi	mova	(%rsp), %r9	popg	Xr14
movq	%r9, %r11	mova	%r14, %rdx	movsla	%edx, %rdx	addl	\$2. %eax	mova	S(%rsp), %rdx	popg	%r15
movsla	%eax, %r9	mova	%r10, %r14	mova	-104(%rsp), %rdi	leag	(%rsi,%r9), %r15	mova	16(%rsp), %r11	ret	
movl	%edi, %r13d	.L22:		mova	%rdx. %rax	addo	%rdx, %rsi .I	.14:		24:	
shra	\$2. %r10	movl	\$092(%rsp)	imula	%rbp, %rax	addo	%rdi, %r15	mova	88(%rsp), %rax	pxor	%xmm1, %xmm1
leag	0(.%rdx.4), %rdi	mova	%rax, %rdi	addo	%r11, %rax	movss	(%r14,%r15,4), %xmm0	addss	(%rax,%rcx,4), %xmm1	imp	.L14
leag	0(,%r9,4), %rdx	movl	%esi, -8(%rsp)	leag	(%rdi,%rax,4), %rsi	mulss	(%r10,%rsi,4), %xmm0	comiss	%xmm1 %xmm3		
movq	%r10, %rbp	mova	%rcx, -24(%rsp)	xorl	%eax. %eax	addss	%xmm0, %xmm1	ibe	.L16		
movq	%rdx. %rax	movq	%r15, %rcx	.L9:		cmpl	%eax, %r13d	pxor	%xmm1, %xmm1		10/01
			11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				10 C A 10 C A				19/61

ANN Models: Accuracy, Operations and Parameters

A. Canziani, E. Culurciello, A. Paszke, "An Analysis of Deep Neural Network Models for Practical Applications", 2018 (EfficientNet-B0/B7 added by myself) https://culurciello.medium.com/analysis-of-deep-neural-networks-dcf398e71aae

ANN Models: Accuracy, Operations and Parameters

What AI do we really need?

D. PerÃ"z, Flikr, 2015

What AI do we really need?

J. Vitti and D. Silverman, "Bart the Genius", The Simpsons, 1990

K. Usher, "The Dwarf in the Dirt", Bones, 2009

Hardware Accelerated Neural Network

What's the interest?

Microsoft Azure Machine Learning Documentation

What's the interest?

Parallel Processing in GPUs and FPGAs

A GPU is effective at processing the <u>same set of operations</u> in parallel – single instruction, multiple data (SIMD). A GPU has a well-defined instruction-set, and fixed word sizes – for example single, double, or half-precision integer and floating point values.

An FPGA is effective at processing the <u>same or different operations</u> in parallel – multiple instructions, multiple data (MIMD). An FPGA does not have a predefined instruction-set, or a fixed data width.

Amazon Web Service Documentation

Hardware Accelerated Neural Network

What's the interest?

E. Nurvitadhi, J. Sim, D. Sheffield, A. Mishra, S. Krishnan, D. Marr, Intel Labs

What's the interest?

Optimize server side AI

- Energy Minimize TCO for AI workloads Greener AI for social acceptance
- Throughput
 Enhance job throughput at constant energy budget

Local computation possible!

Energy

No router, cloud server, ...

- ⇒ Huge constraint in Edge Computing
- ⇒ Worse in IoT
- ⇒ Transmitting data costs energy
- Latency

Immediate response, no dead zone, no network reliability issue, ...

Privacy/security
 No storage in someone else's servers
 Neither wire nor wireless sniffing
 possible

What are the constraints?

- Accuracy needs depend on the application
- Silicon resources:
 - \Rightarrow Computations to perform
 - \Rightarrow Parameters storage and access
- Energy efficiency
 Typical constraints :
 - 10-100 μW for wearables,
 - 10-100 mW for phones,
 - 1-10 W for plugged edge devices
 - 100-1000 W for plugged cloud devices

Ad-hoc hardware means:

- ANN HW/SW partitioning
- Clever SW scheduling
- Clever SW data access

Burden on SW implementation:

- Compilation Frameworks needed!
- No "one-size fits all" network

Inference involves a lot of computations, ...

 High number of floating point (FP) operations

 $0.5G \le Nb \text{ of FLOPs} \le 40G$

 Floating point operations are energy and area costly

(My 4 core-i7 PC ~120 GFLOPs \Rightarrow 30 GFLOPs/core)

"Hardware Architectures for Deep Neural Networks", ISCA Tutorial, 2017

Inference involves a lot of memory accesses, ...

Operation:	Energy (pJ)	Relative Energy Cost				
32b SRAM Read (8KB)	5					
32b DRAM Read	640					
		1	10	10 ²	10 ³	104

"Hardware Architectures for DNN", ISCA Tutorial, 2017

- Mem holds millions of (64 or 32-bit) weights
 ⇒ 4M (GoogLeNet), 60M (AlexNet), 130M (VGG)
- Mem temporarily retains intermediate results
 ⇒ 1M to several M depending on network
- Mem access becomes the bottleneck
 ⇒ Each op needs 2 operands and produces a result
- High power consumption

Coping with GFLOPs and GBytes

Alternatives: trade FLOPs for (some) accuracy loss

Simplify the operations

- Avoid sigmoid, tanh, sqrt and stuff
- FP arithmetic is not really HW friendly

Alternatives: trade bytes for (some) accuracy loss

Use "small" data types, not 32/64-bit floats or ints

Alternatives: re-architect the "system"

- Integrate many memory cuts with processing elements and use them wisely
- Integrate computation into the memory itself

Introduction of a new floating point representation (mainly needed for *training*): Google bfloat16 ("b" for brain)

Used for both weights and activations

- Large dynamic range, still small differences close to zero
- Reduction of multiplier power and footprint
- Optimized storage and bandwidth

Quickly adopted and implemented in HW and SW

- Google TPU v2/v3, TensorFlow
- Intel Nervana, Intel Quartus FPGAs
- CPUs: Intel Xeon (AVX-512), ARMv8.6-A, IBM Power10 Supported from gcc 10.1 and llvm 9.0 on

Using smaller floats!

Microsoft BrainWave project:

FPGA Performance vs. Data Type

Sep 14, 2022

NVIDIA, Arm, and Intel have jointly authored a whitepaper, FP8 Formats for Deep Learning, describing an 8-bit floating point (FP8) specification. It provides a common format that accelerates AI development by optimizing memory usage and works for both AI training and inference. This FP8 specification has two variants, E5M2 and E4M3.

This format is natively implemented in the NVIDIA Hopper architecture and has shown excellent results in initial testing. It will immediately benefit from the work being done by the broader ecosystem, including the AI frameworks, in implementing it for developers.
FP8

https://docs.nvidia.com/deeplearning/ transformer-engine/user-guide/examples/fp8_ primer.html

- E4M3 :±448 and NaN
 More precision, used during forward pass
- E5M2 :±57344, ±Inf and NaN Higher dynamic range, used during backward pass
- Efficiency demonstrated on training Transformers!

FP4: 1 sign bit, 3 or 2 bits of exponent, 1 or 0 bits of mantissa

Logarithmic Number System

Instead of encoding a real value *a*, encode its logarithm. Why? $\log(a \times b) = \log a + \log b!$ However, back to linear for addition, ... But tabulatable for small size numbers Ooups, looks a lot like FP4 with 0-bit mantissa ...

Balanced Ternary and Binary

 $x, w \in \{-1, 0, 1\}$ $x, w \in \{-1, 1\}$ Where will this nonsense stop?

Integer Quantization

Quantization levels and accuracy...

Kees Vissers, "A Framework for Reduced Precision Neural Networks on FPGAs", MPSOC, 2017

Typical Architectures for HW ANN

External HW accelerator for training and inference on laptop/servers

Exploit weight sparsity to optimize memory usage and weight placement Use low precision/high efficiency computation along with on-chip memory storage of the weights Integrate computation inside the memory itself, directly where the data is stored

Sequential MAC computation

 $1 \ {\rm weight} \ {\rm and} \ 1 \ {\rm input} \ {\rm per} \ {\rm cycle} \ {\rm per} \ {\rm neuron}$

Partly parallel computation

p weights and p inputs per cycle per neuron ($p \ll n$)

Neuron core design

Fully parallel computation

n weights and n inputs per cycle per neuron, not really practical!

Accelerator Zoo, Sept 2021 Overview

Scalable AI Computations thanks to SIMT

NVIDIA Hopper Architecture In-Depth | NVIDIA Technical Blog developer.nvidia.com

Latest NVidia GPU: Blackwell

2 Chips on a chiplet, 104 Billions Tr/chip, 814 mm², 700 W, 4 nm TSCM, 10 To/s Chip to Chip ×2 in training performance compared to latest Hopper

GPU	B200	B100
FP4 Tensor Core	18 petaFLOPS	14 petaFLOPS
FP8/FP6 Tensor Core	9 petaFLOPS	7 petaFLOPS
INT8 Tensor Core	9 petaOPS	7 petaOPs
FP16/BF16 Tensor Core	4.5 petaFLOPS	3.5 petaFLOPS
TF32 Tensor Core	2.2 petaFLOPS	1.8 petaFLOPS
FP32	80 teraFLOPS	60 teraFLOPS
FP64 Tensor Core	40 teraFLOPS	30 teraFLOPS
FP64	40 teraFLOPS	30 teraFLOPS

CPU Compressed

Custom hardware for sparse matrix-vector multiplication

Deep Compression Technique

Reduces storage requirements

- Dedicated sparse matrix/vector representation GPU Dense
 ⇒ Eliminates redundant connections
- Quantizes weights down to 5 bits

Quantization of AlexNet weights

- ▶ 256 shared weights (Conv layers) \Rightarrow 4 bits
- ▶ 35x of reduction (240MB \Rightarrow 6.9MB)

Weights stored into on-chip SRAM

⇒ 5 pJ/access (vs. 640 pJ/access off-chip DRAM)

CPU Dense (Baseline)

Connected lavers

Acceleration using Low-Precision (ternary) weights

Only balanced ternary weight are used $\{-1, 0, +1\}$

- Floating point accumulations are kept
- Multipliers are not needed

Most of the FP operations operate on zero values

Non-Zero Fraction

Demonstrated highest accuracy

- \Rightarrow 93% on the ImageNet object classification challenge
- \Rightarrow Divide by 3 the number of FP operations

G. Venkatesh et al., "Accelerating Deep Convolutional Networks Using Low-Precision and Sparsity", ICASSP, 2017

S. Ma et al, The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits, arxiv, 2024

YodaNN: VLSI Implementation of binary-weights CNN Accelerator

Based on BinaryConnect [Courbariaux, NeurIPS 2015]

- ▶ Binary weights $\in \{-1, +1\}$
- 2's complement and multiplexers instead of multipliers
- Still full fledge adders: 12-bit activations

Large on-chip weights storage thanks to their size

Latch-based standard cell memory

Flexible accelerator

- 7 kernel sizes supported
- \Rightarrow 61.2 TOP/s/W at 0.6V

Google Edge Tensor Processor Unit

	V1	V2	V3
Clock Frequency (MHz)	800	1066	1066
# of (X, Y)-PEs	(4, 4)	(4, 4)	(4, 1)
PE Memory	2 MB	384 KB	2 MB
# of Cores per PE	4	1	8
Core Memory	32 KB	32 KB	8 KB
# of Compute Lanes	64	64	32
Instruction Memory	16384	16384	16384
Parameter Memory	16384	8192	8192
Activation Memory	1024	1024	1024
I/O Bandwidth (GB/s)	17	32	32
Peak TOPS	26.2	8.73	8.73

Comes for free in Tensorflow lite

Yazdanbakhsh et al., "An Evaluation of Edge TPU Accelerators for Convolutional Neural Networks", Google, 2021

Greenwaves GAP9

- 330 μW/GOp
- Up to 15.6 GOPs and 32.2 GMACs
- 8, 4, 2-bit SIMD computations
- Support from ML frameworks
- (RISC-V based)

Kalray MPPA3 Tensor Coprocessor

- Extend VLIW core ISA with extra issue lanes
 - \Rightarrow Separate 48x 256-bit wide vector register file
 - \Rightarrow Matrix-oriented arithmetic operations
- ► Full integration into core instruction pipeline
 ⇒ Move instructions supporting matrix-transpose
 - \Rightarrow Proper dependency / cancel management
- ▶ Leverage MPPA memory hierarchy
 ⇒ SMEM directly accessible from coprocessor
 ⇒ Memory load stream aligment operations
- Arithmetic performances
 - \Rightarrow 128x INT8 \rightarrow INT32 MAC/cycle
 - \Rightarrow 64x INT16 \rightarrow INT64 MAC/cycle
 - \Rightarrow 16x FP16 \rightarrow FP32 FMA/cycle

Integration within learning frameworks?

Mobileye EyeQ5

- Vector Microcode Processors:
 CV dedicated VLIW SIMD engines
- Multithreaded Processing Cluster: in between CPU and GPU
- Programmable Macro Array: probably some sort of CGRA
- Full cache coherency!

10+ Watt, 24 Tops

Very ad-hoc programming approach (AFAIU)

www.mobileye.com/our-technology/evolution-eyeq-chip/

Synopsys ARC NPX6

DesignWare ARC NPX6 w/ 440 TOPS* Performance

- Scalable NPX6 architecture
 - 1 to 24 core NPU up to 96K MACS (440 TOPS*)
 - Multi-NPU support (up to eight for 3500 TOPS*)
- · Trusted software tools scale with the architecture
- Convolution accelerator MAC utilization improvements with emphasis on modern network structures, including Transformers
- Generic Tensor accelerator Flexible Activation & support of Tensor Operator Set Architecture (TOSA)
- Memory Hierarchy high bandwidth L1 and L2 memories
- DMA broadcast lowers external memory bandwidth requirements and improves latency
- * 1.3 GHz,5nm FFC worst case conditions using sparse EDSR model

SYNOPSYS

Pierre Paulin, MPSoC, June 2022

© 2022 Synopsys, Inc. 40

30 TOPs/W in 5 nm

Mobile VIT (Apple, March 2022), https://arxiv.org/pdf/2110.02178.pdf

Model	# Params	FLOPs	Top-1 1	Infe	rence Time (ms)	
				iPhone12 - CPU	iPhone12 - Neural Engine	
MobileNetv2 DeIT PiT MobileViT (Ours)	3.5 M 5.7 M 4.9 M 2.3 M	0.3 G 1.3 G 0.7 G 0.7 G	73.3 72.2 73.0 74.8	7.50 ms 28.15 ms 24.03 ms 17.86 ms	0.92 ms 10.99 ms 10.56 ms 7.28 ms	CPU/NNE = 8.1X CPU/NNE = 2.5X
	0.7X Model Size	2.3X FLOPs	+1.5% Accuracy	2.4X Time	7.9X Time	

(Courtesy of Pierre Paulin, Synopsys)

Apple AI NPU not well suited to support Transformers, ...

HW accelerated AI for less than \$100

- Google Coral: byte based matrix × matrix TPU, 2 Watt, 4 TOPs
- NVIDIA Jetson Nano: float and int GPU (128-cores), 10 Watt, 472 GFlops
- Intel Neural Computing Stick 2: float VPU (128-bit VLIW vector (?) procs), 2 Watt, 4 TOPs

Software support out-of-the-box by major "generic" frameworks

- Tensorflow[lite]
- Pytorch
- Or ad-hoc ones
 - OpenVino

...

Memory PE PE PE PE PE PE

FINN: Framework for building FPGA

Mapping binarized neural networks to hardware All values $\in \{-1, +1\}$

- Binary input activation
- Binary synapse weights
- Binary output activation

Weights kept in on-chip memory

- \Rightarrow Zynq-7000 FPGA technology
- \Rightarrow 80.1% accuracy for CIFAR-10
- ⇒ Total system power 25W

Convolution layer

- Dot-product between input vector and row of synaptic weight matrix
- Compares result to a threshold
- Produces single-bit output

Y. Umuroglu et al., "FINN: A Framework for Fast, Scalable Binarized Neural Network Inference", FPGA, 2017

Ternary weights and ternary activations

Ternary NN FPGA Architecture

- ▶ Balanced ternary values $t \in \{-1, 0, +1\}$
- Ternarization layer \rightarrow Learnable thresholds
- Speed vs Area/Power trade-off possible

NN-64 with parallelism degree 128

- ▶ (LUT+B)RAM throughput of 18.7 Tb/s
- Find to end latency: $135 \ \mu s$
- ► Max performance: 18.7 T(T)OP/s
- ▶ Max power: 11.5 W
- ▶ Peak efficiency of 5226 fps per Watt ⇒ 1.62 T(T)OP/s/W or 810 G(T)MAC/s/W

A. Prost-Boucle et al., "High-Efficiency Convolutional Ternary Neural Networks with Custom Adder Trees and Weight Compression", ACM TRETS, 2018

Name suggests it mimics brain-like functioning Comes in two (orthogonal) flavors

A. Basu et al. Spiking neural network integrated circuits: A review of trends and future directions CICC 2022.

In/Near Memory Computing

I. Wang et al. A 28-nm compute SRAM with bit-serial logic/arithmetic operations for programmable in-memory vector computing, ISSC 2020.

Computations using spikes, not bits

TrueNorth: Integrated Chip for Spiking Neural Networks (IBM)

neurosynaptic core

Romain Brette, Computing with spikes

 Neurons communicate sending spikes

 Data encoded according to frequency, time, and spatial distribution of spikes
 Non-"Von Neumann" architecture

- \Rightarrow 4096 neuromorphic cores
- \Rightarrow 1 million digital neurons
- ⇒ 256 millions synapses
- ⇒ 46 GSOP/s/W at 65 mW

Made w/ Asynchronous logic

Neuromorphic core

256 neurons (PE) + 64k synapses (memory)

- Memory and computation physically close to each other
- Reduction of power consumption

More Resources, Better Packing, Greater Density

MAC operations using Non Volatile Memory (NVM)

Computation accelerated by NVM arrays

- Synaptic weights are **not** stored in external memories
 - \Rightarrow Zero transfers between memory and processing elements
 - \Rightarrow Reduction of energy consumption

Arrays of resistive RAM devices

- Resistances vary according to voltages
- No CMOS access devices but complex peripheral circuitry
- Analog, intrinsically approximate, computations

Convolution Kernel in 12×12 Array

From receptive field to feature maps...

- Receptive field = row voltages
- Convolution kernel = column of resistive devices
- Convolution operation = column current

Interactive protocol programs kernels

Single demonstration on digits of MNIST

L. Gao et al., "Demonstration of Convolution Kernel Operation on Resistive Cross-Point Array", IEEE Electron Device Letters, 2016 P. Chi et al., "PRIME: A Novel Processing-In-Memory Architecture for Neural Network Computation in ReRam-Based Main Memory", ISCA, 2016

aiLINEAR product due Q4 2024

ReRAM based Analog-In-Memory Computing

Forsees 2 to 3 order of magnitude better power efficiency compared to Digital (https://ailinear.com/inference/)

Technologies

Artificial synapse using NVM

- Modeling synapses between neurons
- Input and output potentials fired between neurons (spikes)
- Synaptic connections are potentiated or depressed

Electronic Synapses Modeled by Phase Change Memory (PCM) Devices

- Programmed in different states (conductances)
- Compatible with CMOS components
- Scalable to nanometric dimensions

500x661 PCM Crossbar Array

Large scale implementation

- 3-layer perceptron
- 916 neurons
- 164865 synaptic connections

⇒ Accuracy: 82% (MNIST) ⇒ Low-power: at least 120x (vs. GPU)

S. Burc et al., "Experimental Demonstration of Array-Level Learning with Phase Change Synaptic Devices", IEDM, 2013

G.W. Burr et al., "Experimental Demonstration and Tolerancing of a Large-Scale NN (165000 Synapses) using PCM as the Synaptic Weight Element", 2015 G.W. Burr et al., "Large-Scale Neural Networks Implemented with NVM as the Synaptic Weight Element: Comparative Performance Analysis", IEDM, 2015

Take Away

Classical digital (CMOS) architectures are here to stay

Design of more efficient HW for inference and training

- Ad-hoc circuits necessary for high-performance, low energy solutions
- Quantization
 - \Rightarrow Simpler arithmetic circuits
 - \Rightarrow Lower memory size and bandwidth requirements
- Memory organization
 - \Rightarrow Optimized access to parameters and intermediate results
 - ⇒ Structured sparsity

In/Near Memory Computing is progressing

- Minimal data movements, in-place computations
- Might even be analog
- But harder to manufacture and use

But HW guys cannot do that alone!

- Relevant number representations
- Compression
- Quantization aware training
- Sparsity aware training
- HW accelerated low bit-width learning
- Frameworks to facilitate HW accelerators usage
MIT Tutorial on Digital ML Hardware https://www.rle.mit.edu/eems/publications/tutorials/ NVIDIA Arith keynote on number representation https://arith2022.arithsymposium.org/keynotes.html#Dally

For listening

Q & A

And to my fellow coworkers

...

@TIMA Adrien Prost-Boucle, Ana Pinzari, Liliana Andrade, Olivier Muller, Alban Bourge, and elsewhere Hande Alemdar (LIG, now METU) Vincent Leroy (LIG, now Google) Henri-Pierre Charles (CEA), Florent de Dinechin (CITI), Fabrice Rastello (INRIA),

• • •