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Machine Learning requires an ever-increasing amount of compute

[Sevilla et al., 2022]

• 10 - 15 % of Google’s energy consumption [Patterson et al., 2022]

• Important emissions from energy consumption : 552 tCO2e to train GPT-3 once and 38

tCO2e for BLOOM [Luccioni et al., 2023]
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Numerous optimisations: how are the impacts of compute evolving?

Exponential increase

in energy efficiency

of compute

Major AI companies claim

decreasing AI footprint

[Patterson et al., 2022]

Impact Shifting Rebound effect +

growth of AI sector

+ Technical and Shift optimisation

Frequent renewal
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State of the Art



Green AI, optimisations and individual model assessment

Models have

significant

carbon footprint

[Strubell et al., 2019]

Need for ’Green AI’

[Schwartz et al., 2020]

Reporting tools

Green Algorithms [Lannelongue et al., 2021]

CodeCarbon [Schmidt et al., 2022]

MLCA [Morand et al., 2024]

Carbon footprint

of individual models

(e.g., [Luccioni et al., 2023])

Optimisation to build

less carbon-intensive models

[Patterson et al., 2022], [Wu et al., 2022]
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Rebound effect

”Optimisation will decrease

AI footprint”

[Patterson et al., 2022]

Growth of ICT

often absorbs optimisation

[Bol et al., 2021],[Gossart, 2015]

Machine learning

training compute

increased exponentially

[Sevilla et al., 2022], [Thompson et al., 2023]

Producer rebound

[Coroama and Mattern, 2019]
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Studies at scale of part of AI sector

Machine learning

training compute

increased exponentially

[Sevilla et al., 2022],

[Thompson et al., 2023]

Individual Inferences

have increased

energy consumption

[Desislavov et al., 2023]

2012-2018: data-center

energy consumption

had increased slowly

[Masanet et al., 2020]

Potential growth

of ML sector

with surge

in demand for LLM

[de Vries, 2023]

Data-center

energy consumption

could double by 2026

[International Energy Agency (IEA), 2024]
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Methodology



Gathering information on Graphics cards for Machine Learning

TechPowerUp

GPU database

Wikipedia list of

NVIDIA graphics cards

NVIDIA Workstation graphics cards

between 2013 & 2023

Other sources

(e.g., Google documentation)

specific cards (e.g., Google’s TPU)

• 167 cards models

• 74 cross-validated (44%)

• NVIDIA datasheets when

diverging

• Thermal Design Power (TDP)

• GPU die area and technological node

• memory type and size

• compute power

• release date
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Data on Machine learning training

EpochAI Notable ML systems dataset [Epoch AI, 2022]

Models that have advanced the state of the art, had a large influence in the field’s

history, or had a large impact within the world.1

Required information to estimate the environmental damages of model training:

• training duration

• training hardware

• electricity source

1https://epochai.org/data/notable-ai-models-documentation
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Information on training duration: number of GPU hours

If training duration and number of cards are available

• 107 models (13% of entries)

• GPU hours = training duration ×#cards

• most reliable estimate as it uses information directly from papers presenting models

If Training hardware and number of FLOP during training are available

• 93 other models (∼ 25% of entries in total)

• GPU hours = #FLOPS
peak performance

• linear regression to predict performance ratio when both estimates are available (87

observations)

• predicts ∼ 27% constant performance ratio
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Training hardware characteristics

values consistent with hyper-scaler datacenters

• 2 CPU per server plus:

• NVIDIA workstation cards: 4 graphics cards

• NVIDIA non-workstation cards: 2 graphics cards

• non-NVIDIA cards: manufacturer documentation for the number of cards

• Lack of information → Memory not accounted for, source of under-estimation

• 3 year server duration based on graphics card lifespan [Ostrouchov et al., 2020]

• Information from META: near optimal 1.1 PUE, average utilization of 50%

[Wu et al., 2022]

• Supposed 100% hardware usage during training.
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Electricity source and modeling carbon intensity optimisation

Use the carbon intensity of the country of the ML system producer
If multiple countries are involved, all are considered to create a value interval

Modeling strategies for reducing the environmental impact of energy usage

• Aims at accounting for compute location shifting and investment for de-carbonizing

data-center electricity sources

• Continuous reduction of the carbon intensity of up to 25% per year starting in 2019.

Example (Modeled evolution of the carbon intensity of the USA electicity mix:)
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Assessing environmental damages, MLCA [Morand et al., 2024]

Bottom-up approach to evaluate hardware production and usage based on hardware

characteristics and information about training process

Assesses:

• Carbon footprint through Global Warming Potential (GWP100, expressed in kgCO2 eq)

• Metalic resource depletion through Abiotic Resource Depletion (ADP, expressed in

kgSb eq)
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Results



Evolution of the characteristics of NVIDIA workstation graphics cards

12/20



Energy efficiency to scale-up compute
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Increase in the environmental damages of produced graphics cards

Carbon Footprint

Metallic resource depletion
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Increase in the environmental damages of graphics cards used

Carbon Footprint Metallic resource depletion
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Large increase in the number of cards to train models
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Exponential increase in the energy consumption of models training
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Exponential increase in the environmental damages of models training

Carbon footprint Metallic resource depletion
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Greener energy cannot void carbon footprint of models training
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Conclusion



Conclusion

Current impact reduction strategies alone cannot curb the growth
in the environmental impacts of AI.

• Impacts are partly shifting to the production phase

• Increase in the environmental damages of producing graphics cards

• Optimizations have served scaling-up and not scaling down

• Growth paradigm for machine learning models translates into an exponential growth of the

energy consumption and environmental damages of models training

• Need to combine impact reduction strategies with broader reflection on the place and role

of AI in a sustainable society.
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