Modeling and Measuring Energy: from Hardware to Software

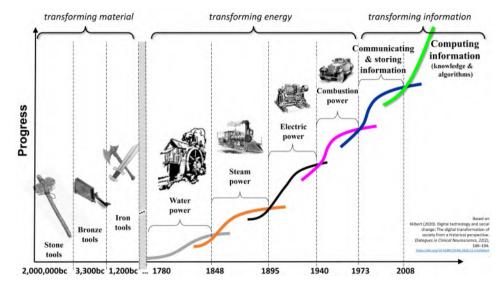
Adel Noureddine

Associate Professor HDR University of Pau and Pays de l'Adour

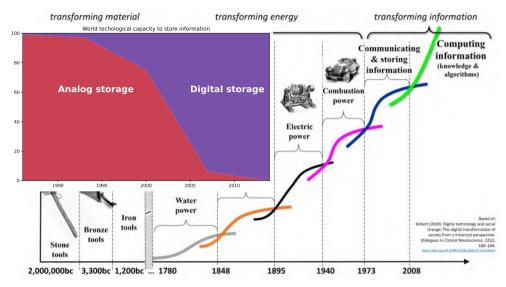
Journées de Recherche en Apprentissage Frugal (JRAF 2024) Grenoble, France

21 November 2024

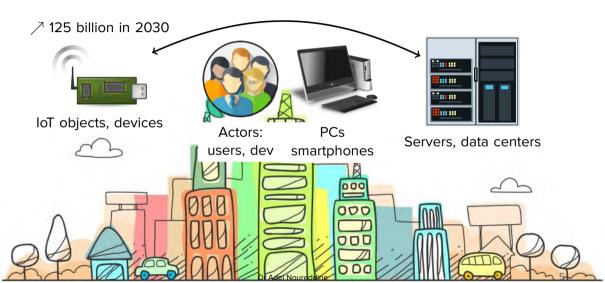
About me

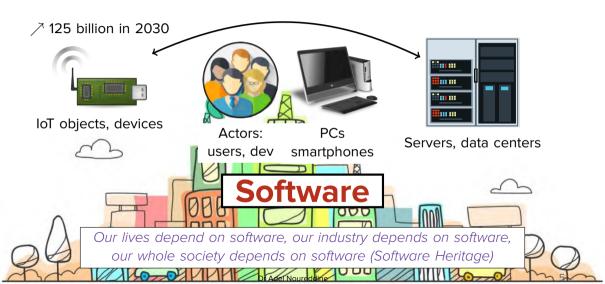

Adel Noureddine Associate Professor HDR in Computer Science @University of Pau and Pays de l'Adour @LIUPPA laboratory

Researcher in Green IT, Software Engineering and Autonomic Computing


noureddine.org

Context: Software Ecosystems


Kondratiev Waves of Innovation


Kondratiev Waves of Innovation

Software Ecosystems

Software Ecosystems

Environmental Impact of ICT

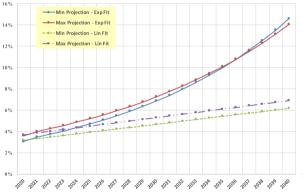
9,000 terawatt hours (TWh)

ENERGY FORECAST

Widely cited forecasts suggest that the total electricity demand of information and communications technology (ICT) will accelerate in the 2020s, and that data centres will take a larger slice.

Networks (wireless and wired)

- Production of ICT
- Consumer devices (televisions, computers, mobile phones)
- Data centres


20.9% of projected electricity demand

Electricity 7% in 2020 13% in 2030

2010 2012 2014 2016 2018 2020 2022 2024 2026 2028 2030

Environmental Impact of ICT

ICT Global Carbon Footprint relative to Total WW Footprint 2020 thru 2024

GHGE 2% in 2007 14% in 2040

• Hardware: IoT to data centers, CPS

Architecture	Manufacturer	mipsel
Alpha	HPe (formerly HP, Compaq, D	mips64el
Arm	Hundreds	PowerPC
Armel	Hundreds	PowerSPE
armhf	Hundreds	<u>PPC64</u>
arm64	Hundreds	ppc64el
hppa	HPe (formerly HP)	riscv64
<u>i386</u>	Intel, AMD, Cyrix, NSC, Trans	s390
amd64	AMD, Intel, VIA	s390x
ia64	Intel, HPe	SH4
<u>m68k</u>	Freescale (formerly Motorola)	sparc64
<u>mips</u>	Cavium, Wave Computing (for	<u>x32</u>

Cavium, Loongson, Wave (Cavium, Loongson, Wave (IBM, Freescale (formerly M IBM, Freescale (formerly M IBM, Freescale (formerly M IBM ?SiFive, etc. IBM IBM Renesas (formerly Hitachi) Sun, Fujitsu, etc. AMD. Intel. VIA

Adel Noureddine

- Hardware: IoT to data centers, CPS
- Software: OS, VM, software versions, updates, configurations

App A Bru/Like	Ang 2 Bru/Like	Arr 3 Bru/Like						
Guest	Guest	Guest						
Hypervisor								
Heat Operating Systeme								
Hardware								
LEL	T IL L	102						

App A Bru/Like	App Z. Biru/Like	
De	ocker Engin	ne
Ope	crating Syst	eme
Har	dware	

	Included in level					
Optimization	01	02	03			
-defer-pop	•	٠	•			
-thread-jumps	•	•	•			
-branch-probabilities	•	•	•			
-cprops-registers		•	•			
-guess-branch-probability	•	•	٠			
-omit-frame-pointer		•				
-align-loops	0	•	•			
-align-jumps	0	•	٠			
-align-labels	0	•	•			
-align-functions	0	•				
-optimize-sibling-calls	0	٠	٠			
-cse-follow-jumps	0	•	•			
-cse-skip-blocks	0					
-gcsc	0	•				
-expensive-optimizations	0	•				
-strength-reduce	a					

- Hardware: IoT to data centers, CPS
- Software: OS, VM, software versions, updates, configurations
- Humans: user profiles, developers, system admins, deciders, procurers, managers, etc.

US Adults'	Socia	l Plat	fo	rm	Use	e, b	y De	emo	ogra	aph	ic G	TO	ıp	1		arket	ini
s of US adults who use:	YouTube	Facebo	lok .	Insta	gram	Pinte	rest	Link	edin	Snap	chat	Twit	ter	What	sApp	Reddit	
Total	73	n	642		37%		28%		27%		24%		22%		20%	1	311
Men	7	A	63%	-	31%		15%		29%		24%		24%		22%		35
Women	64	N	75%		43%		42%		24%		24%		27%		295	1	11
Non-Hispanic White	71		70%		335		23%		28%		22%		27%		17%		12
Non-Mispanic Black	77		70%		40%		27%		24%		28%		24%		24%	1	45
Mispatsic	71	A	64%		\$2%		22%		10%	-	29%		25%		42%		14
Apra 18-24	90	A	78%		75%		38%		17%		73%	-	44%		20%		27
April 25-29	93	N	84%		57%		28%		44%		47%		32%		28%		23
Ages 30-49			79%		47%		36%		37%		25%		26%		30%		34
Ages 50-64	71	A	68%		23%		27%		24%		9%		17%		35%	1	61
Ages 68+	38	n 💼	46%		83.		35%		11%	1	3%	1	75	1	82	1.	n
HH1: <\$30k	64	n	64%		35%		18%		10%		27%		20%		29%		97
HHI: \$30-75k	75	Δ.	72%		39%		27%		26%		26%		20%		34%		30
HHE: \$75k+	43	N	74%		42%		475		49%		22%		20%	-	25%		17
High school or less		8	64%	-	23%		29%	1	9%		22%		17%		28%	1	67
Some college	75	×	75%		37%		32%		26%		29%		24%		345		34
College+	80	× .	74%		43%		38%		52%		20%		32%	-	28%		15
Urban	77	×	73%		46%		30%		33%		29%		26%	-	24%		11
Suburban	74		60%		38%		30%		30%		20%		22%		23%		23
Ranal	64	N	66%		21%		26%		10%		20%		13%		30%		8%

- Project manager, scrum master
- Developers, architect, designer
- Tester, analyst, QA

Observing Energy

- Monitoring energy in heterogeneous environments?
- Mapping energy across software & hardware layers?
- Providing energy monitoring data to users?

Understanding Impacts on Energy

- Understanding hardware impacts?
- Understanding software & source code impacts?
- Understanding the role of users?

Holistic approach:

Observe & understand software energy ubiquitously (everywhere)

Observing Energy

- Monitoring energy in heterogeneous environments?
- Mapping energy across software & hardware layers?
- Providing energy monitoring data to users?

Understanding Impacts on Energy

- Understanding hardware impacts?
- Understanding software & source code impacts?
- Understanding the role of users?

Holistic approach:

Observe & understand software energy ubiquitously (everywhere)

Observing Energy

Monitoring energy in heterogeneous environments?

Understanding Impacts on Energy

• Understanding hardware impacts?

Linderstanding software & source

- Mapping energy a hardware layers?
- Providing energy users?

Use case specific Not covering ecosystem Not integrating human actors

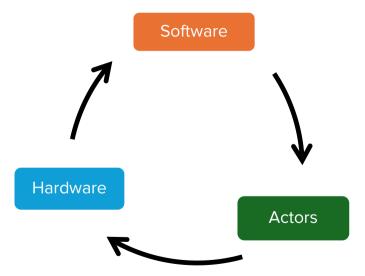
Limitations of existing approaches:

the role of users?

Holistic approach:

Observe & understand software energy ubiquitously (everywhere)

Observing Energy

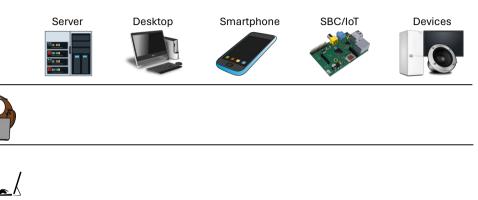

- Monitoring energy in heterogeneous environments?
- Mapping energy across software & hardware layers?
- Providing energy monitoring data to users?

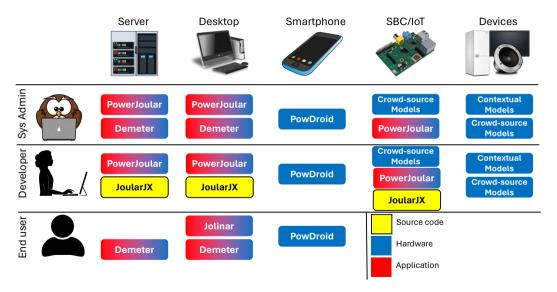
Holistic approach:

Observe & understand software energy ubiquitously (everywhere)

Understanding Impacts on Energy

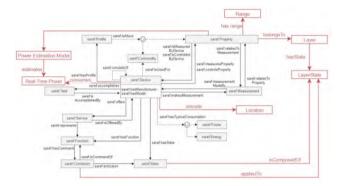
- Understanding hardware impacts?
- Understanding software & source code impacts?
- Understanding the role of users?





Sys Admin

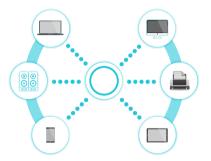
Developer



Modeling power consumption of devices

Contextual Modeling

- Devices, software & humans
- Actors & connectivity generate contextual data
- Map and observe the energy dimension
- Green extension of the SAREF ontology



PhD thesis: Houssam Kanso, 2019-2022

An Automated Energy Management Framework for Smart Homes. Kanso et al. In JAISE journal. 2023

Billions of heterogeneous devices

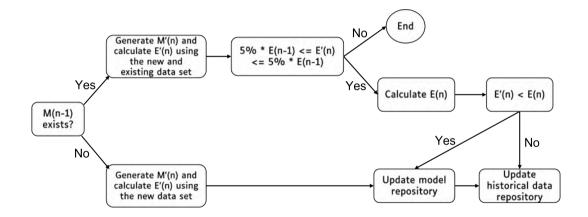
- 100+ billion connected devices in 2030
- Heterogeneity in hardware architecture, configuration & software
- Real-time monitoring without hardware power meters
- Current power models are not evolutive, or are built on static data sets

Modeling approach

- Expert identifies a characteristic to model
 - CPU utilization, size of data written to disk, time spend sending data in network, etc.
- Build or use a benchmark to stress the characteristic
 - Example: for CPU utilization, stress every percentage of the CPU (from 0% to 100%)
- Collect power measurements & apply statistical approaches
- Generate power model (often regression models)
- Validate power models (cross-validation, margin of error)

Modeling approach

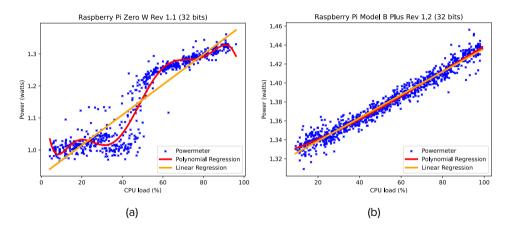
- Expert identifies a characteristic to model
 - CPU utilization, size of data written to disk, time spend sending data in network, etc.
- Build or use a benchmark to stress the characteristic
 - Example: for CPU utilization, stress every percentage of the CPU (from 0% to 100%)
- Collect power measurements & apply statistical approaches
- Generate power model (often regression models)
- Validate power models (cross-validation, margin of error)

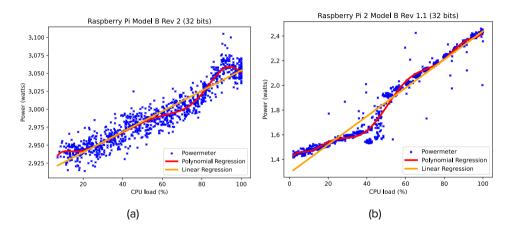

Approach

Automate and crowd-source

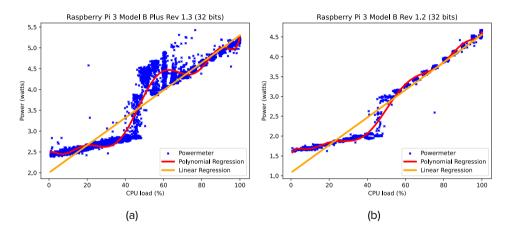
Implementation for Raspberry Pi devices

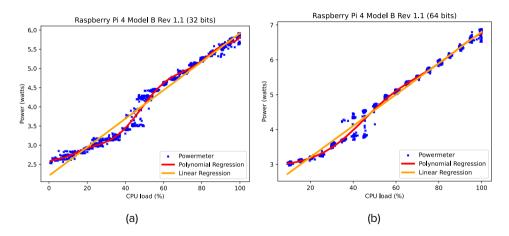
- Characteristic to model: CPU utilization
- Collected metrics: CPU utilization (calculated from CPU cycles), and real power consumption (from a powermeter)
- Cleaning and synchronization of collected data (irrelevant data points, synchronize clock diversion with power meter and raspberry, timestamp, etc.)

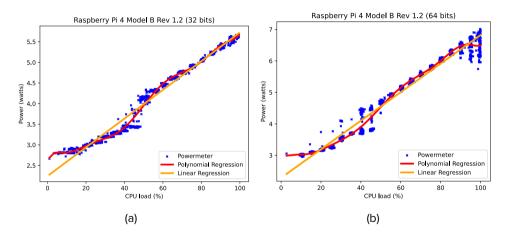

Model Generator & Validator


Empirical validation

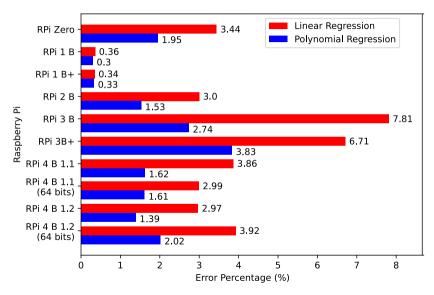
- 8 Raspberry Pi devices from all generations, 32 and 64 bits (since this study, we added RPi 400, RPi 5 & Asus TinkerBoard S)
- PowerSPY2 powermeter, disconnect all external peripherals including USB and HDMI ports


Model	Rev.	OS	S CPU Architecture		Released
Zero W	1.1	32	armv6l	1	2017
1B	2	32	armv6l	1	2012
1B+	1.2	32	armv6l	1	2014
2B	1.1	32	armv7l	4	2015
3B	1.2	32	armv7l	4	2016
3B+	1.3	32	armv7l	4	2018
4B	1.1	32/64	armv7l/aarch64	4	2019
4B	1.2	32/64	armv7l/aarch64	4	2019

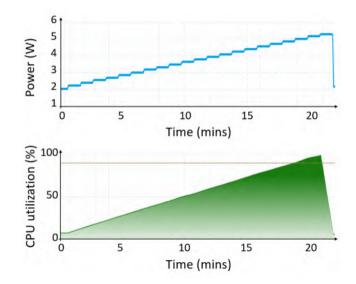

(a) Raspberry Pi Zero W Rev 1.1 (32 bits) (b) Raspberry Pi Model B Plus Rev 1.2 (32 bits)


(a) Raspberry Pi Model B Rev 2 (32 bits) (b) Raspberry Pi 2 Model B Rev 1.1 (32 bits)

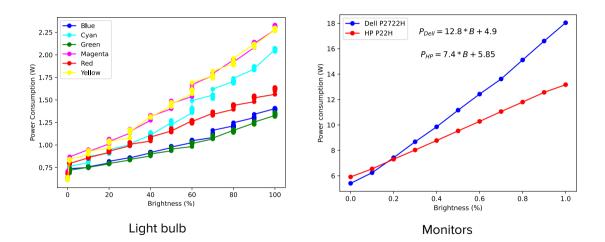
(a) Raspberry Pi 3 Mobel B Plus Rev 1.3 (32 bits) (b) Raspberry Pi 3 Model B Rev 1.2 (32 bits)



(a) Raspberry Pi 4 Model B Rev 1.1 (32 bits) (b) Raspberry Pi 4 Model B Rev 1.1 (64 bits)


(a) Raspberry Pi 4 Model B Rev 1.2 (32 bits) (b) Raspberry Pi 4 Model B Rev 1.1 (64 bits)

Power models accuracy



Dr Adel Noureddine

Usage: remote power monitoring with Zabbix server

Beyond Computing Devices

Power Models Database

- A database containing power models for various computing components, and hardware devices
- Currently, multiple models for single board computers (Raspberry Pi, Asus Tinker Board), and monitors
- Aims to centralize power models with an open data format
- Also aims to provide an API to download or update power models
- github.com/joular/powermodels 🗹

Power Models Database: Raspberry Pi devices

Model	Codename	Component	Model Variable
Model Zero W (rev 1.1), 32-bit OS	rbpzw1.1	CPU	CPU usage
Model 1 B (rev 2), 32-bit OS	rbp1b2	CPU	CPU usage
Model 1 B+ (rev 1.2), 32-bit OS	rbp1b+1.2	CPU	CPU usage
Model 2 B (rev 1.1), 32-bit OS	rbp2b1.1	CPU	CPU usage
Model 3 B (rev 1.2), 32-bit OS	rbp3b1.2	CPU	CPU usage
Model 3 B+ (rev 1.3), 32-bit OS	rbp3b+1.3	CPU	CPU usage
Model 4 B (rev 1.1), 32-bit OS	rbp4b1.1	CPU	CPU usage
Model 4 B (rev 1.1), 64-bit OS	rbp4b1.1-64	CPU	CPU usage
Model 4 B (rev 1.2), 32-bit OS	rbp4b1.2	CPU	CPU usage
Model 4 B (rev 1.2), 64-bit OS	rbp4b1.2-64	CPU	CPU usage
Model 400 (rev 1.0), 64-bit OS	rbp4001.0-64	CPU	CPU usage
Model 5 B (rev 1.0), 64-bit OS	rbp5b1.0-64	CPU	CPU usage

Power Models Database: other devices & hardware

Model	Codename	Component	Model Variable
Asus Tinker Board (S)	asustbs	CPU	CPU usage
Dell P2722H	p2722h	Entire device	Brightness
HP P22H	p22h	Entire device	Brightness

Software energy

What is software energy?

- Software energy is the energy consumed by hardware components to execute software instructions
- Example : a software instructs the processor to calculate the first 100 digits of Pi
- Software energy = energy consumed by hardware components (CPU, memory, etc.) for the calculations

Software energy

Accurately measuring software energy is tricky and difficult:

- Source code energy is very hard to predict. Ex. What is the energy cost of Towers of Hanoi algorithm?
- Energy is measured on runtime, and depends on hardware configuration. Same software → different energy consumption depending on hardware (mobile vs. server)
- Energy is affected by more than just hardware configuration : temperature, materials, other software running, etc.
- As hardware is the one consuming energy, there is no physical devices or meters to measure software energy directly

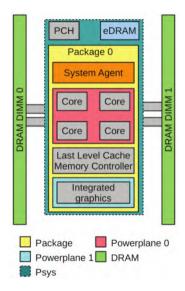
How to measure software energy?

Software energy can be estimated with a software approach :

- Model hardware's power with a power model (RAPL, regression models, etc.)
- Calculates software's hardware usage from available metrics (CPU usage from the OS, network usage with a profiler, etc.)
- Allocate software energy according to hardware usage

PowerJoular

PowerJoular


- PowerJoular is a command line software to monitor, in real time, the power consumption of software and hardware components (CPU, Nvidia GPU)
- Support multiple CPU architectures:
 - x86/64 using Intel RAPL interface (Intel, AMD) through powercap
 - ARM (most Raspberry Pi, including RPi 5, and Asus Tinker Board) through our power model
 - Inside virtual machines in all supported host platforms
- Low overhead (Ada, compiled to native code), GPL 3
- noureddine.org/research/joular/powerjoular
- github.com/joular/powerjoular

PowerJoular: Intel/AMD CPU

- Uses Intel RAPL interface through powercap (integrated in the Linux kernel)
- Reading energy_uj files in /sys/class/powercap/intel-rapl/ folder
- energy_uj provides an increased energy value in µJ (difference of energy_uj between two timestamps →energy consumed by the CPU)

Steps:

- Detects which RAPL domain is supported by the CPU
- if psys is supported, we use it
- if not, we use pkg

PowerJoular: ARM

- Supports a list of Raspberry and Asus Tinker Board devices
- Uses our power models based on CPU utilization (collected from /proc/stat)
- By default: polynomial model (up to degree 9), but linear can be used

Example for RPi 4 (where x is CPU utilization):

$$\begin{split} P(x) &= 2.58542069543335 + 12.335449x - 248.010554x^2 + 2379.832320x^3 - \\ 11962.419149x^4 + 34444.268647x^5 - 58455.266502x^6 + 57698.685016x^7 - \\ 30618.557703x^8 + 6752.265368x^9 \end{split}$$

PowerJoular: virtual machines

- All its functionalities (such as monitoring a PID or an application) work the same inside a virtual machine as with bare metal installation
- PowerJoular in the guest OS needs to get the power consumption of the virtual machine instance itself
- The power data of the VM process need to be written to a shared file between the host and the guest
- PowerJoular is agnostic to what power tools in installed in the host and can work with any available tool that is capable of monitoring the VM process

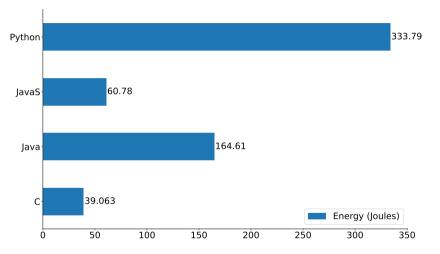
Documention: joular.github.io/powerjoular/ref/vm.html 🗹

PowerJoular: Nvidia GPU

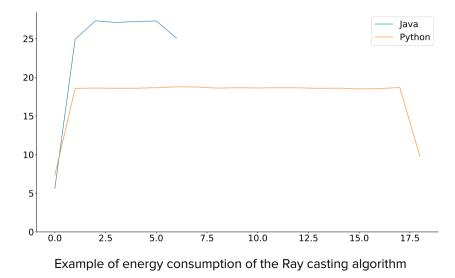
Support monitoring GPU energy by using Nvidia SMI interface

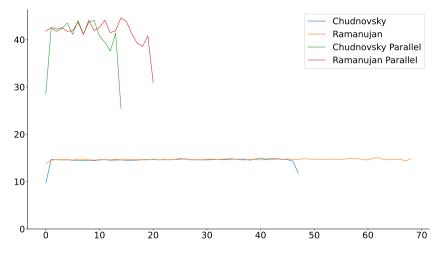
nvidia-smi --format=csv,noheader,nounits --query-gpu=power.
draw

PowerJoular: Process Monitoring

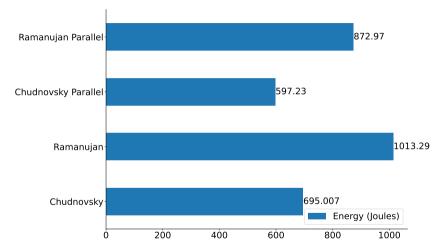

- PowerJoular can monitor the energy of a specific process using its Process ID (PID)
- Collects CPU utilization and PID utilization from /proc/stat and /proc/pid/stat
- Allocate PID energy, every second in real time, according to its CPU cycles usage percentage

PowerJoular: Application Monitoring


- PowerJoular can monitor the energy of a specific application
- Uses the application name to seach for all its PIDs (through pidof command in Linux, or pgrep)
- Measures and aggregate the energy of all PIDs in real time (sum of the energy of all app's PIDs)
- PowerJoular can keep up with process creation and destruction by applications (checks for application's PIDs every second)


PowerJoular: additional features

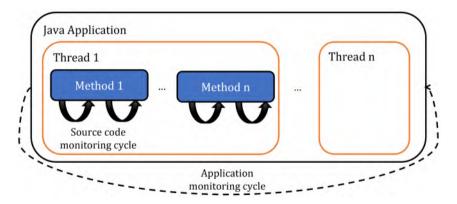
- Provides a systemd service to automate energy monitoring
- Can provide energy for non elevated users without weakening the system (such as with direct RAPL access, *i.e.*, PLATYPUS attack)
- Writes energy results to CSV files, for every second
- Has an overwrite mode: only last measurement is stored in file

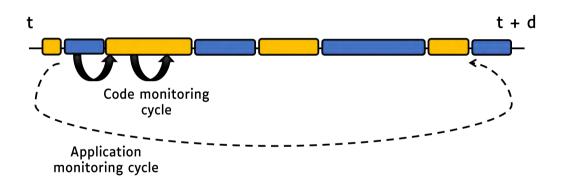


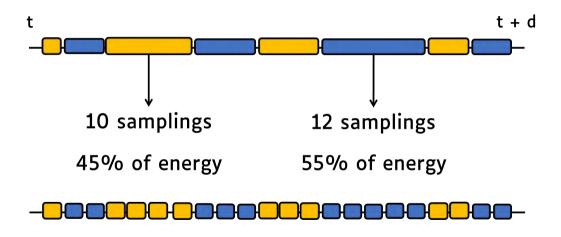
Example of energy consumption of the Ray casting algorithm

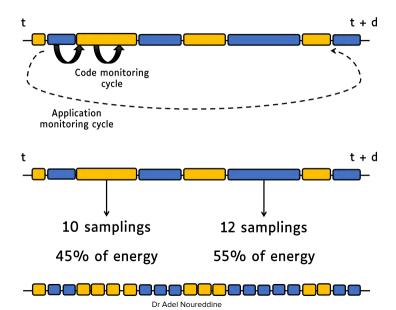
Example of energy consumption of y-cruncher to calculate 150m digits of Pi

Example of energy consumption of y-cruncher to calculate 150m digits of Pi


Source code energy with JoularJX


Source code energy


- How to detect and monitor energy consumption "inside" applications?
- What is the energy cost of individual methods, classes, etc.?


Statistical sampling

- Monitor and collect metrics from the operating system, virtual machine, software, traces, etc.
- Apply statistical methods to estimate energy consumption of source code
- Have a lower overhead than instrumentation or annotations
- In some cases, doesn't require the source code (e.g., in Java)
- Example tool: JoularJX

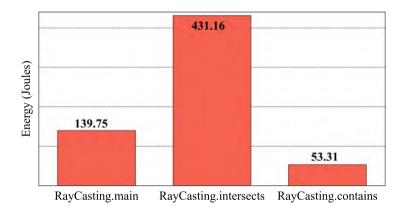
JoularJX

- JoularJX is a Java agent for software power monitoring at the source code level
- Support multiple architectures: x86/64 (Intel/AMD), Intel & ARM on macOS, ARM on Raspberry Pi and Asus Tinker Board, and in virtual machines
- GPL3 and works on Windows, macOS and Linux
- Real time power monitoring of the source code (methods and execution branches)
- noureddine.org/research/joular/joularjx
- github.com/joular/joularjx 🗹

JoularJX

- Measures the energy for every method of the application and/or the JDK
- Measures the energy for methods' call tree (all execution branches)
- Monitor the power consumption evolution of every method
- Monitors in real time and exposes all monitored data in CSV files
- No modifications needed nor access to the application's source code

JoularJX: CPU power

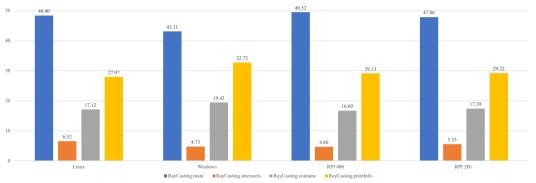

- Get CPU energy from RAPL on x86/64 Linux and Windows
- In x86/64 Linux: uses powercap and a similar approach to PowerJoular
- On x86/64 Windows:
 - Older versions of JoularJX: uses Intel Power Gadget API, only for Intel CPUs (deprecated by Intel)
 - Latest version: uses Hubblo's RAPL driver for Windows (reads MSR's like powercap, works for Intel/AMD)
- On ARM Linux: our own power models for Raspberry Pi and Tinker Board (similar to PowerJoular)
- on macOS (Intel & Apple's ARM chips): calls and parses powermetrics command

JoularJX: virtual machines

- JoularJX also works inside virtual machines. All its functionalities work the same inside a virtual machine as with bare metal installation
- In virtual machines, JoularJX in the guest OS needs to get the power consumption of the virtual machine instance itself
- JoularJX is agnostic to what power tools in installed in the host and can work with any available tool that is capable of monitoring the VM process

Documention: joular.github.io/joularjx/ref/vm.html

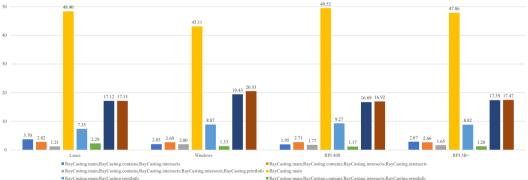
JoularJX: example of usage


Example of energy consumption of the Java implementation of the Ray casting methods

JoularJX

Energy of methods

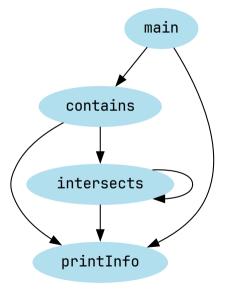
Energy Consumption of Methods in RayCasting Java Program, in percentage



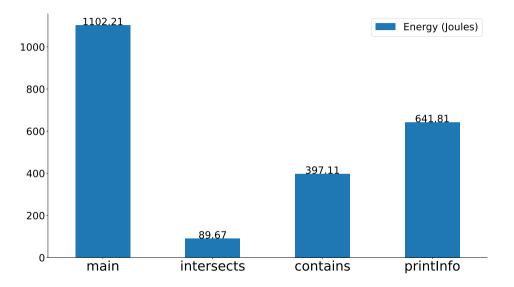
Joular.JX

Energy of execution branches

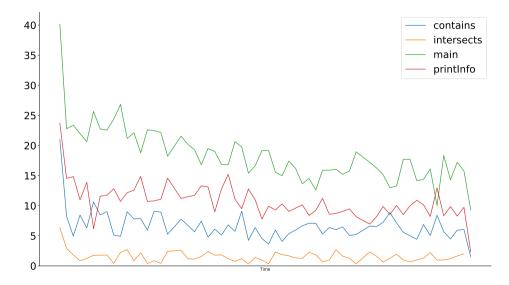
Energy Consumption of Methods' Call Tree in RayCasting Java Program, in percentage

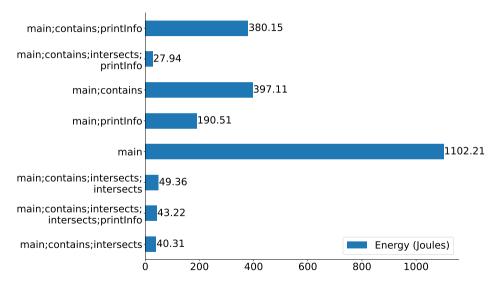


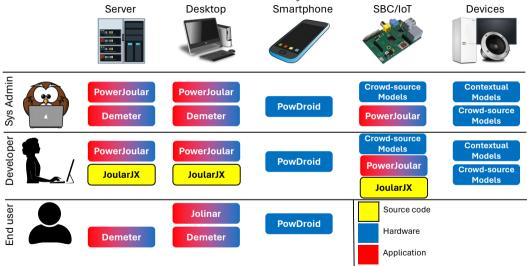
RavCasting main:RavCasting contains:RavCasting intersects:RavCasting printInfo


RayCastine main:RayCastine contains:RayCastine printInfo

RayCastine main RayCastine contains


Software example: custom RayCasting algorithm


Energy consumption of methods


Power evolution of methods

Energy conusmption of the call tree

Summary

Analyzing Software Energy Consumption. Noureddine. Technical Briefing @ICSE 2024 conference

Dr Adel Noureddine

About me

Adel Noureddine Associate Professor HDR in Computer Science @University of Pau and Pays de l'Adour @LIUPPA laboratory

Researcher in Green IT, Software Engineering and Autonomic Computing

noureddine.org 🗹