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Context: Software Ecosystems
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Software Ecosystems

↗ 125 billion in 2030

IoT objects, devices

Servers, data centers
PCs

smartphones

Actors:

users, dev
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Software Ecosystems

↗ 125 billion in 2030

IoT objects, devices

Servers, data centers
PCs

smartphones

Actors:

users, dev

Software

Our lives depend on software, our industry depends on software,

our whole society depends on software (Software Heritage)
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Environmental Impact of ICT

Electricity

7% in 2020

13% in 2030
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Environmental Impact of ICT

Climate Change, 2016). We performed both a linear and exponen-
tial fit to the data shown in Fig. 7. The coefficient of determination
R2 of the exponential fit was 0.9978 and 0.9957, with an average
annual growth rate of 8.1% and 7.0% for the minimum and
maximum curves respectively. The R2 of the linear fit, on the other
hand, was 0.9857 and 0.9930, for the minimum and maximum fits
respectively. Although the exponential fit is slightly higher and
more realistic, we show both fits on Fig. 7 to offer a lower bound of
our projections. Both exponential fits predict that by 2040, the ICT
carbon footprint could account for as much as 14% of the total
worldwide footprint at the 2016 level, and hence exceed the
current relative footprint of the Agriculture sector (9%), and almost
half of the current total footprint of the industrial sector (29%) in
the United States (U.S. Environmental Protection Agency, 2017).

It's interesting to note that the gap between the minimum and
maximum projection for the exponential fit appears to close at
around year 2035. We remind the reader that the gap between the
minimum and maximum projections is due primarily to our large
uncertainty about the lifecycle annual footprint of computers
(desktops and laptops) and displays. The total combined relative
contribution of those devices declined from 35% in 2010 to 20% in
2020, and is expected to continue to decline beyond 2020, and
hence it's reasonable to expect the gap between the minimum and
maximum projections to eventually become negligible. Our expo-
nential projections through 2040 shows a crossover where the
minimum curve surpasses the maximum curve. We surmise this
behavior as an artifact of the exponential fit, and the increased error
that is inherent to extrapolations over such a long time scale in
general. The key message of the exercise however is that both the
minimum and maximum projections suggest that continued
exponential growth of the ICT footprint, if unchecked, will reach as
high as 14% of the total worldwide footprint, a clearly unacceptable
level as it will definitely undermine any reductions achieved from
the other GHGE emissions sources.

On the other hand, the linear fits show an increase to 6% and 7%
for the minimum and maximum projections respectively. While a
linear fit is unrealistically conservative, it still shows almost a
doubling of the relative contribution of ICT from 2020 levels and
a 10-fold increase from the 2007 levels. It's arguable that an

incremental increase of 6% of the global levels of CO2-e emissions
from ICT might still seriously undermine the global efforts to curb
GHGE emissions overall.

6. Discussion & limitations

The above analysis of the growing impact of ICT industry on the
global carbon footprint takes into precise and methodical account
the impact of the production footprint in addition to the energy
consumption of the ICT devices. It also accounts and highlights for
the first time the contribution of smart phones to the overall
impact. While most of the reviewed literature has focused on the
impact of personal computers, and mostly desktops, we found that
by 2020, the contribution of PC's (including desktops and note-
books) accounts for no more than 13% of the total ICT impact, and is
expected to continue to decline in relative terms beyond 2020, with
most of the decline coming from the desktops sector, which
dropped from 18% in 2010 to 7% in 2020, while notebooks dropped
from a relative contribution of 8%e6% in the same period. Displays
continue to contribute significantly to the overall footprint where
they dropped from an overall 9%e7% in the same 10-year period.

The big surprise however in our findings is the disproportionate
impact of smart phones by 2020, and its vertiginous growth from
4% in 2010 to 11% in 2020 in relative terms. In absolute terms, the
GHGE emissions of smart phones grew from about 17MteCO2-e in
2010 to 125MteCO2-e in 2020, representing a 730% increase in the
span of 10 years. This impact is clearly driven by the fact that the
production energy makes up 85e95% of its lifecycle annual foot-
print, driven by the short average useful life of smart phones of 2
years, which is driven by the telecom membership business model.
Clearly this business model, while highly profitable to the smart
phone manufacturers and the telecom industry, is unsustainable
and quite detrimental to the global efforts in GHGE reductions.

Furthermore, the contribution of the ICT infrastructure makes
up the lion share of the overall industry impact, growing from 61%
in 2010 to 79% in 2020. Most of that relative growth comes from the
data center industry, which as we move increasingly into a digital
age, has become the backbone of both the Internet as well as the
telecom industry, and grew its contribution to the overall footprint

Fig. 7. ICT footprint as a percentage of total footprint projected through 2040 using both an exponential and linear fits.

L. Belkhir, A. Elmeligi / Journal of Cleaner Production 177 (2018) 448e463458

GHGE

2% in 2007

14% in 2040
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Complexity of Heterogeneity in Software Ecosystems

Hardware Software Humans

• Hardware: IoT to data centers, CPS

• Software: OS, VM, software versions, updates, configurations

• Humans: user profiles, developers, system admins, deciders, procurers,

managers, etc.
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Complexity of Heterogeneity in Software Ecosystems

• Hardware: IoT to data centers, CPS

• Software: OS, VM, software versions, updates, configurations

• Humans: user profiles, developers, system admins, deciders, procurers,

managers, etc.

• Project manager, scrum master

• Developers, architect, designer

• Tester, analyst, QA
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Scientific Challenges

Observing Energy

• Monitoring energy in heterogeneous

environments?

• Mapping energy across software &

hardware layers?

• Providing energy monitoring data to

users?

Understanding Impacts on Energy

• Understanding hardware impacts?

• Understanding software & source

code impacts?

• Understanding the role of users?

Holistic approach:

Observe & understand software energy ubiquitously (everywhere)
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hardware layers?

• Providing energy monitoring data to

users?

Understanding Impacts on Energy

• Understanding hardware impacts?

• Understanding software & source

code impacts?

• Understanding the role of users?

Limitations of existing approaches:

Use case specific

Not covering ecosystem

Not integrating human actors

Holistic approach:

Observe & understand software energy ubiquitously (everywhere)

Dr Adel Noureddine 8



Scientific Challenges

Observing Energy

• Monitoring energy in heterogeneous

environments?

• Mapping energy across software &

hardware layers?

• Providing energy monitoring data to

users?

Understanding Impacts on Energy

• Understanding hardware impacts?

• Understanding software & source

code impacts?

• Understanding the role of users?

Holistic approach:

Observe & understand software energy ubiquitously (everywhere)

Dr Adel Noureddine 8



Observing Green Software Ecosystems

Software

Actors

Hardware
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Observing Green Software Ecosystems

Server Desktop Smartphone SBC/IoT Devices
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Observing Green Software Ecosystems
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Modeling power consumption of devices
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Contextual Modeling

• Devices, software & humans

• Actors & connectivity

generate contextual data

• Map and observe the

energy dimension

• Green extension of the

SAREF ontology

PhD thesis: Houssam Kanso, 2019-2022

An Automated Energy Management Framework for Smart Homes. Kanso et al. In JAISE journal. 2023
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Billions of heterogeneous devices

• 100+ billion connected devices in 2030

• Heterogeneity in hardware architecture,

configuration & software

• Real-time monitoring without hardware

power meters

• Current power models are not evolutive, or

are built on static data sets
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Modeling approach

• Expert identifies a characteristic to model

I CPU utilization, size of data written to disk, time spend sending data in network,

etc.

• Build or use a benchmark to stress the characteristic

I Example: for CPU utilization, stress every percentage of the CPU (from 0% to

100%)

• Collect power measurements & apply statistical approaches

• Generate power model (often regression models)

• Validate power models (cross-validation, margin of error)

Approach

Automate and crowd-source
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Implementation for Raspberry Pi devices

• Characteristic to model: CPU utilization

• Collected metrics: CPU utilization (calculated from CPU cycles), and real power

consumption (from a powermeter)

• Cleaning and synchronization of collected data (irrelevant data points,

synchronize clock diversion with power meter and raspberry, timestamp, etc.)
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Model Generator & Validator
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Empirical validation

• 8 Raspberry Pi devices from all generations, 32 and 64 bits (since this study, we

added RPi 400, RPi 5 & Asus TinkerBoard S)

• PowerSPY2 powermeter, disconnect all external peripherals including USB and

HDMI ports

Model Rev. OS CPU Architecture Cores Released

Zero W 1.1 32 armv6l 1 2017

1B 2 32 armv6l 1 2012

1B+ 1.2 32 armv6l 1 2014

2B 1.1 32 armv7l 4 2015

3B 1.2 32 armv7l 4 2016

3B+ 1.3 32 armv7l 4 2018

4B 1.1 32/64 armv7l/aarch64 4 2019

4B 1.2 32/64 armv7l/aarch64 4 2019
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Power models

(a) (b)

(a) Raspberry Pi Zero W Rev 1.1 (32 bits) (b) Raspberry Pi Model B Plus Rev 1.2 (32 bits)
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Power models

(a) (b)

(a) Raspberry Pi Model B Rev 2 (32 bits) (b) Raspberry Pi 2 Model B Rev 1.1 (32 bits)
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Power models

(a) (b)

(a) Raspberry Pi 3 Mobel B Plus Rev 1.3 (32 bits) (b) Raspberry Pi 3 Model B Rev 1.2 (32 bits)
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Power models

(a) (b)

(a) Raspberry Pi 4 Model B Rev 1.1 (32 bits) (b) Raspberry Pi 4 Model B Rev 1.1 (64 bits)
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Power models

(a) (b)

(a) Raspberry Pi 4 Model B Rev 1.2 (32 bits) (b) Raspberry Pi 4 Model B Rev 1.1 (64 bits)
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Power models accuracy
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Usage: remote power monitoring with Zabbix server
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Beyond Computing Devices

Light bulb
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Power Models Database

• A database containing power models for various computing components, and

hardware devices

• Currently, multiple models for single board computers (Raspberry Pi, Asus

Tinker Board), and monitors

• Aims to centralize power models with an open data format

• Also aims to provide an API to download or update power models

• github.com/joular/powermodelsExternal-Link-Alt
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Power Models Database: Raspberry Pi devices

Model Codename Component Model Variable

Model Zero W (rev 1.1), 32-bit OS rbpzw1.1 CPU CPU usage

Model 1 B (rev 2), 32-bit OS rbp1b2 CPU CPU usage

Model 1 B+ (rev 1.2), 32-bit OS rbp1b+1.2 CPU CPU usage

Model 2 B (rev 1.1), 32-bit OS rbp2b1.1 CPU CPU usage

Model 3 B (rev 1.2), 32-bit OS rbp3b1.2 CPU CPU usage

Model 3 B+ (rev 1.3), 32-bit OS rbp3b+1.3 CPU CPU usage

Model 4 B (rev 1.1), 32-bit OS rbp4b1.1 CPU CPU usage

Model 4 B (rev 1.1), 64-bit OS rbp4b1.1-64 CPU CPU usage

Model 4 B (rev 1.2), 32-bit OS rbp4b1.2 CPU CPU usage

Model 4 B (rev 1.2), 64-bit OS rbp4b1.2-64 CPU CPU usage

Model 400 (rev 1.0), 64-bit OS rbp4001.0-64 CPU CPU usage

Model 5 B (rev 1.0), 64-bit OS rbp5b1.0-64 CPU CPU usage
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Power Models Database: other devices & hardware

Model Codename Component Model Variable

Asus Tinker Board (S) asustbs CPU CPU usage

Dell P2722H p2722h Entire device Brightness

HP P22H p22h Entire device Brightness
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Software energy
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What is software energy?

• Software energy is the energy consumed by hardware components to execute

software instructions

• Example : a software instructs the processor to calculate the first 100 digits of Pi

• Software energy = energy consumed by hardware components (CPU, memory,

etc.) for the calculations
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Software energy

Accurately measuring software energy is tricky and difficult:

• Source code energy is very hard to predict. Ex. What is the energy cost of

Towers of Hanoi algorithm?

• Energy is measured on runtime, and depends on hardware configuration.

Same software → different energy consumption depending on hardware

(mobile vs. server)

• Energy is affected by more than just hardware configuration : temperature,

materials, other software running, etc.

• As hardware is the one consuming energy, there is no physical devices or

meters to measure software energy directly
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How to measure software energy?

Software energy can be estimated with a software approach :

• Model hardware’s power with a power model (RAPL, regression models, etc.)

• Calculates software’s hardware usage from available metrics (CPU usage from

the OS, network usage with a profiler, etc.)

• Allocate software energy according to hardware usage
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PowerJoular
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PowerJoular

• PowerJoular is a command line software to monitor, in real time, the power

consumption of software and hardware components (CPU, Nvidia GPU)

• Support multiple CPU architectures:

I x86/64 using Intel RAPL interface (Intel, AMD) through powercap
I ARM (most Raspberry Pi, including RPi 5, and Asus Tinker Board) through our

power model
I Inside virtual machines in all supported host platforms

• Low overhead (Ada, compiled to native code), GPL 3

• noureddine.org/research/joular/powerjoularExternal-Link-Alt

• github.com/joular/powerjoularExternal-Link-Alt
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PowerJoular: Intel/AMD CPU

• Uses Intel RAPL interface through powercap

(integrated in the Linux kernel)

• Reading energy_uj files in

/sys/class/powercap/intel-rapl/ folder

• energy_uj provides an increased energy

value in µJ (difference of energy_uj between

two timestamps →energy consumed by the CPU)

Steps:

• Detects which RAPL domain is supported by

the CPU

• if psys is supported, we use it

• if not, we use pkg
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PowerJoular: ARM

• Supports a list of Raspberry and Asus Tinker Board devices

• Uses our power models based on CPU utilization (collected from /proc/stat)
• By default: polynomial model (up to degree 9), but linear can be used

Example for RPi 4 (where x is CPU utilization):

P (x) = 2.58542069543335 + 12.335449x − 248.010554x2 + 2379.832320x3 −
11962.419149x4 + 34444.268647x5 − 58455.266502x6 + 57698.685016x7 −
30618.557703x8 + 6752.265368x9
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PowerJoular: virtual machines

• All its functionalities (such as monitoring a PID or an application) work the same

inside a virtual machine as with bare metal installation

• PowerJoular in the guest OS needs to get the power consumption of the virtual

machine instance itself

• The power data of the VM process need to be written to a shared file between

the host and the guest

• PowerJoular is agnostic to what power tools in installed in the host and can

work with any available tool that is capable of monitoring the VM process

Documention: joular.github.io/powerjoular/ref/vm.htmlExternal-Link-Alt
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PowerJoular: Nvidia GPU

• Support monitoring GPU energy by using Nvidia SMI interface

nvidia -smi --format=csv,noheader ,nounits --query -gpu=power.
draw

Dr Adel Noureddine 38



PowerJoular: Process Monitoring

• PowerJoular can monitor the energy of a specific process using its Process ID

(PID)
• Collects CPU utilization and PID utilization from /proc/stat and

/proc/pid/stat
• Allocate PID energy, every second in real time, according to its CPU cycles

usage percentage
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PowerJoular: Application Monitoring

• PowerJoular can monitor the energy of a specific application

• Uses the application name to seach for all its PIDs (through pidof command in

Linux, or pgrep)
• Measures and aggregate the energy of all PIDs in real time (sum of the energy

of all app’s PIDs)

• PowerJoular can keep up with process creation and destruction by

applications (checks for application’s PIDs every second)
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PowerJoular: additional features

• Provides a systemd service to automate energy monitoring

• Can provide energy for non elevated users without weakening the system

(such as with direct RAPL access, i.e., PLATYPUS attack)

• Writes energy results to CSV files, for every second

• Has an overwrite mode: only last measurement is stored in file
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PowerJoular: example of usage

0 50 100 150 200 250 300 350

C

Java

JavaS

Python

39.063
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60.78

333.79

Energy (Joules)

Example of energy consumption of the Ray casting algorithm
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PowerJoular: example of usage
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Example of energy consumption of the Ray casting algorithm
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PowerJoular: example of usage

0 10 20 30 40 50 60 700
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Example of energy consumption of y-cruncher to calculate 150m digits of Pi
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PowerJoular: example of usage

0 200 400 600 800 1000

Chudnovsky

Ramanujan

Chudnovsky Parallel

Ramanujan Parallel

695.007

1013.29

597.23

872.97

Energy (Joules)

Example of energy consumption of y-cruncher to calculate 150m digits of Pi
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Source code energy with JoularJX
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Source code energy

• How to detect and monitor energy consumption ”inside” applications?

• What is the energy cost of individual methods, classes, etc.?
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Statistical sampling

• Monitor and collect metrics from the operating system, virtual machine,

software, traces, etc.

• Apply statistical methods to estimate energy consumption of source code

• Have a lower overhead than instrumentation or annotations

• In some cases, doesn’t require the source code (e.g., in Java)

• Example tool: JoularJX
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Statistical sampling: JoularJX approach
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Statistical sampling: JoularJX approach
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Statistical sampling: JoularJX approach
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Statistical sampling: JoularJX approach
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JoularJX

• JoularJX is a Java agent for software power monitoring at the source code

level

• Support multiple architectures: x86/64 (Intel/AMD), Intel & ARM on macOS,

ARM on Raspberry Pi and Asus Tinker Board, and in virtual machines

• GPL3 and works on Windows, macOS and Linux

• Real time power monitoring of the source code (methods and execution

branches)

• noureddine.org/research/joular/joularjxExternal-Link-Alt

• github.com/joular/joularjxExternal-Link-Alt
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JoularJX

• Measures the energy for every method of the application and/or the JDK

• Measures the energy for methods’ call tree (all execution branches)

• Monitor the power consumption evolution of every method

• Monitors in real time and exposes all monitored data in CSV files

• No modifications needed nor access to the application’s source code
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JoularJX: CPU power

• Get CPU energy from RAPL on x86/64 Linux and Windows

• In x86/64 Linux: uses powercap and a similar approach to PowerJoular

• On x86/64 Windows:

I Older versions of JoularJX: uses Intel Power Gadget API, only for Intel CPUs

(deprecated by Intel)
I Latest version: uses Hubblo’s RAPL driver for Windows (reads MSR’s like

powercap, works for Intel/AMD)

• On ARM Linux: our own power models for Raspberry Pi and Tinker Board

(similar to PowerJoular)

• on macOS (Intel & Apple’s ARM chips): calls and parses powermetrics
command
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JoularJX: virtual machines

• JoularJX also works inside virtual machines. All its functionalities work the

same inside a virtual machine as with bare metal installation

• In virtual machines, JoularJX in the guest OS needs to get the power

consumption of the virtual machine instance itself

• JoularJX is agnostic to what power tools in installed in the host and can work

with any available tool that is capable of monitoring the VM process

Documention: joular.github.io/joularjx/ref/vm.htmlExternal-Link-Alt
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JoularJX: example of usage

Example of energy consumption of the Java implementation of the Ray casting methods
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JoularJX

Energy of methods
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JoularJX

Energy of execution branches
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Software example: custom RayCasting algorithm

main

contains

printInfo

intersects
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Energy consumption of methods
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Power evolution of methods
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Energy conusmption of the call tree
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Summary
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